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Highlights
Studies indicate that G protein-coupled
receptor (GPCR) activation is amultistate
transition process instead of a simple
switch, suggesting the possibility of
modulating the GPCR function through
tuning of these individual states.

A biased ligand was proposed to specif-
ically target one signaling pathway over
others in amultiple-signaling coexistence
system. However, despite the progress
in structural biology, a detailed mecha-
nism of how this is achieved remains
elusive.
Although structure-based virtual drug discovery is revolutionizing the conven-
tional high-throughput cell-based screening system, its limitation is obvious,
together with other critical challenges. In particular, the resolved static snap-
shots fail to represent a full free-energy landscape due to homogenization in
structural determination processing. The loss of conformational heterogeneity
and related functional diversity emphasize the necessity of developing an
approach that can fill this space. In this regard, NMR holds undeniable potential.
However, outstanding questions regarding the NMR application remain. This
review summarizes the limitations of current drug discovery and explores the
potential of 19F NMR in establishing a conformation-guided drug screening system,
advancing the cell- and structure-based discovery strategy for G protein-coupled
receptor (GPCR) biased drug screening.
Research has indicated that different
GPCR conformations interact with dif-
ferent downstream partners, dictating
various pharmacological outputs.

19F NMR has been demonstrated to
be extremely promising in delineating
GPCR conformations, attributable to its
quantitative properties and high sensitiv-
ity toward electrostatic changes of the
probe microenvironment. Thus, there is
tremendous potential for biased drug
discovery by establishing a rigorous cor-
relation between individual receptor con-
formations and the pharmacological
consequence upon ligand binding.
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Biased Agonism in the GPCR
Biased agonism is a ligand-based signaling preference [1] observed when multiple signal
pathways coexist in a signaling process. Since its introduction in the 1990s [2], the study of
biased agonism has overwhelmingly centered on G protein-coupled receptors (GPCRs)
(see Glossary) and, in particular, focused on two classical signal pathways: G protein and
β-arrestin [3] (Figure 1). As a matter of fact, the concept of biased agonism can be applied to
any signaling where the ligand-activated molecule (usually the receptor) is capable of interacting
with multiple downstream partners [4] but selectively directs the downstream signal based on
biased ligand binding.

Research has indicated that full agonist-type drugs often activate multiple signal pathways,
resulting in off-target side effects; such ligands are also referred to as balanced agonists [5].
In the GPCR regime, balanced agonists often trigger both G protein and β-arrestin signaling
[6]. The study of biased agonism is also primarily centered on determining whether the ligand is
G protein or β-arrestin biased. However, as 16 Gα subunits (Gαs, Gαi, Gαo, Gαq, Gα12/13, etc.)
have been discovered, along with 5 Gβ and 12 Gγ proteins in human [7], a large combination
pool of heterotrimeric G proteins exist. Multiple heterotrimeric G proteins have been reported
for the same receptor [8], as well as β-arrestins [9]. Although the concept of biased agonism
has been proposed for more than two decades, we are still at the early stage of exploring a
suitable and practical approach that can rationally design a biased drug. This goal remains a
grand challenge for cell- and structure-based drug discovery systems.

Overall Challenges of Biased Drug Designing
Lack of Molecular Understanding of Biased Signaling
While significant progress has been made in linking distinct pharmacological phenomena to
various ligand bindings and their signaling effectors, such as taking advantage of approaches
like bioluminescence resonance energy transfer (BRET) [10,11], the following has not yet been
fully established: (i) techniques for quantitative analyses of ligand functional selectivity [12] in
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Glossary
Balanced agonist: a drug that
increases activities of multiple signaling
pathways.
Biased ligand: a drug that increases
the activity of a specific signaling
pathway.
Cryo-electron microscopy
(cryo-EM): a procedure that deep-
freezes a sample and uses electrons to
make an image of protein structure.
Gprotein-coupled receptor (GPCR):
a class of seven-transmembrane
proteins that transmit extracellular to
intracellular signals and are triggered by
a wide range of factors, including light,
compounds, peptides, and proteins.
NMR: nuclear magnetic resonance, a
spectrometer used for studying the
behavior of different nuclei, such as 1H,
13C, 15N, and 19F, etc.
Paramagnetic relaxation
enhancement (PRE): an NMR
technique whereby paramagnetic ions
such Mn2+ are introduced to a system in
order to enhance the relaxation of spins
in the proximity.
Pseudo-contact chemical shift
(PCS): an additional nuclear chemical
shift effect on a nucleus in spatial vicinity
due to partial polarization.
X-ray crystallography: a technique of
using X-rays passing through
crystallized proteins to determine
structures.
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Figure 1. Classical Biased Signaling for G Protein and β-arrestin Pathways in G Protein-Coupled Receptors
(GPCRs).
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order to identify the roles of individual signal pathways in a multisignaling system; (ii) techniques
for predicting the physiological response for any given known structure according to its
pharmacophores; and, ultimately, (iii) how to rationally design an efficacious biased drug for a
given disease that results from a specific signaling dysfunction [13]. This could be attributed to
an incomplete understanding of the two following prerequisites:

(i) Limited molecular understanding of ligand bias. Perhaps the best-known aspect of molecular-
based biased agonism is that each ligand stabilizes a specific receptor conformation [14,15].
While conformational ensembles have been preliminarily quantified for several key receptors,
including β2-adrenergic receptor (β2AR) [16,17], adenosine A2A receptor (A2AR) [18,19],
and the leukotriene B4 receptor BLT2 [20], we have yet to establish quantitative correlations
between ligand structure, receptor conformation, and pharmacological output. First, an
approach that can quantitatively differentiate the receptor conformations induced by ligand
bindings is yet to be developedwith the application for drug discovery, though significant prog-
ress has been made in developing various techniques, including NMR [16,18,20–24], double
electron–electron resonance [25], BRET [26], and fluorescence resonance energy transfer
(FRET) [27]. Second, a comprehensive connection between the ligand pharmacophore, the re-
sponsive receptor conformation(s), the ligand functional selectivity, and its pharmacological
output, is still lacking. Furthermore, conformational dynamics and kinetics are also not fully
linked to signaling efficiency and efficacies [18,24], though the concept of ‘pluridimensional’
efficacy [28] has been advanced so that receptor activation potency was not merely driven
by ligand off-rate but also driven by ligand-induced conformation differences for both receptor
and G proteins, along with their interaction efficiencies [29].

(ii) The current in vivo ‘ligand bias’ assay is often thwarted by ‘systembias’ and signal promiscuity.
Technically speaking, a biased signaling response results from the combination of two distinct
phenomena: ligand bias and systembias [30]. Systembias, or ‘apparent’ bias, reflects inherent
differences in biochemical measurements aswell as in biological systems. Ligand bias, or ‘true’
biased agonism, refers to differential signaling caused by a molecular variation that governs the
interaction between ligand and transduction proteins [18,22,31]. The biggest challenge of
biased drug discovery is to create a correct target product profile, which is then used to
determine how effective each ligand of interest is on each associated signal pathway [12].
However, the pharmacological output is often affected by undesirable signaling crosstalk
due to the signal promiscuity among the various receptors. For instance, in mammalian
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systems, many GPCRs coexist and interplay with downstream transducers, leading to an
inaccurate evaluation of bias-degree in a drug candidate.
Missing Parts in Current Drug Screening Systems
With differential ligand binding, GPCRs can interact selectively with various intracellular partners,
resulting in different downstream signaling and pharmacological effects. Although studies have
advanced our understanding of the GPCR activation process, the functional relevance of each indi-
vidual conformation and their roles in the signaling process remains elusive. The increased number
of protein structures and the advancement of computational tools such as pharmacophore models
[32], molecular docking [33], de novo ligand design [34], and molecular dynamics (MD) simulations
[35], in particular, a ligand docking platform HADDOCK incorporated with NMR data [36], have rev-
olutionized structure-based drug discovery. As a consequence, several GPCR agents have entered
into clinical trials [37]. Compared with the cell-based drug discovery platform alone, structure-based
drug discovery begins to fulfill its promise in ligand screening with affordable, super-fast computa-
tional clusters [38]. Large-scale virtual screening systems have been developed, including ZINC
[39], SwissDock [40], and Enamine REAL [41], accessible to a broad audience of practitioners, in
which 0.75 billion real compounds and 1.4 billion make-on-demand compounds are included in
the ZINC15 and Enamine databases, respectively. The advent of machine-learning techniques is
expected to further accelerate and significantly improve the accuracy of in silico screening efforts.

The GPCR signaling process can be described as a chain of protein–protein interactions (PPIs)
initially triggered by a ligand, ranging from photons, odorants, ions, and small neurotransmitters
to large peptide hormones and large proteins, etc. [42,43]. The final output of the signaling is
derived from a unique order of events. As discussed, some proteins, especially receptors, are
capable of binding to different signaling partners, thus conferring the diversity and specificity to
the PPIs and different outputs. We do not know yet the exact molecular mechanism by which
the PPIs govern this distinct and specific signaling. It has been increasingly reported that the
receptors, especially GPCRs, adopt different conformations in these processes, providing the
molecular foundation for the signaling diversity. According to this paradigm, a ligand-triggered
signaling process can be depicted, as shown in Figure 2, where different ligands could
TrendsTrends inin PharmacologicalPharmacological SciencesSciences

Figure 2. Schematic Correlations between Ligand, Receptor Conformation, Signaling, and Pharmacological Output
Using Opioid Receptor as a Model Where Analgesics and Addiction Are Two Main Pharmacological Outputs.
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preferentially select different receptor conformations [44–46]. This implies that any given specific
conformation of the receptor has its own preferred transducer as well as a possibly responsive
transducer conformation and, as such, a defined pharmacological signal or a set of signals that
are triggered by a balanced ligand (such as morphine, buprenorphine, codeine, fentanyl, heroin)
[47] in the opioid receptor exemplified in Figure 2. However, in our current drug discovery system,
the detailed conformational information for the receptor or its downstream effectors are missing.
Understanding the correlation between ligand pharmacophore, the receptor conformation, and
correlated pharmacological output is critical for identifying biased signaling and such a strategy
for rational biased drug design. We must therefore establish an approach to delineate receptor
conformations and then define the pharmacological and physiological relatives of these different
individual conformations, which in turn can guide purposeful design of a biased drug targeting a
specific conformation (ensemble) that will lead to a desired signaling profile.

Limitation of Cell- and Structure-Based Drug Discovery Systems
With the advancement of X-ray crystallography and cryo-electron microscopy (cryo-EM),
structural biology has made tremendous progress. So far, over 370 structures of more than
70 GPCRs [48] have been resolved, providing unprecedented structural insights into receptor
activation and allostery. Despite these, X-ray and cryo-EM are unable to elucidate dynamics of
individual proteins or PPIs. Structural snapshots cannot capture a continuous conformational
transition, extant structures associated with these processes, and the full spectrum of receptor
functionality. Sample preparation for X-ray crystallography and cryo-EM homogenize samples,
reducing their applicability in drug design. Furthermore, the intrinsic flexibility and plasticity of the
GPCR often requires thermo-stabilization during sample preparation in order to facilitate structural
determination (this includes replacing ICL3 with a thermo-stabilized T4 lysozyme or BRIL [49,50]
proteins as well as fusing a stabilizer such as BRIL onto the N terminus [51], thermo-stabilized
mutagenesis [52], nanobody-assisted stabilization, and engineeredGprotein [53,54]). Consequently,
both structural heterogeneity and functional diversity are diminished. NMR, on the contrary, typically
studies a wild-type receptor of interest used as-is or with minimal structure–function perturbation.
This advantage is of paramount importance with respect to the study of the GPCR conformation,
dynamics, kinetics of ligands and downstream effectors, and PPIs. Therefore, an NMR-based
approach to biased drug discovery has unparalleled promise, as it is based on the conformational
heterogeneity of the receptor.

In addition to the stand-alone molecular structure of the various GPCRs, more than ten GPCR-
heterotrimeric G protein complex structures have been resolved to date, including β2AR [55],
calcitonin gene-related peptide (CGRP) [56], calcitonin receptor (CTR) [57], glucagon-like
peptide-1 receptor (GLP-1R) [58], cannabinoid receptor (CB)1 and CB2 [59], CXCL8 [60], and
parathyroid hormone receptor type 1 [61] in complex with Gαβγ. However, the mobility and
plasticity of the interactions between the receptor and the G proteins creates challenges in reveal-
ing the intermediate complex structures using X-ray and cryo-EM in order to gain insights into the
sequential interactions, emphasizing the need for the development of alternative approaches,
including NMR and computational simulation methods. However, there are also inherent and
technical limitations to MD simulations, most notably sampling issues, which can reduce their
usefulness in the drug discovery process. Considering that most structures were resolved in
complex with antagonists/inverse agonists, it is still extremely challenging to derive a complete
picture of the receptor conformational ensemble and associated free-energy landscape starting
from either the inactive state or active state structures. Furthermore, the missing parts of the
experimentally resolved structures often include disordered loops or domains (e.g., intracellular
domain III, unresolved extracellular domains, and missing orientations for H-bonds and side-
chain residues), which all pose challenges of various degrees. Therefore, NMR exhibits undeniable
22 Trends in Pharmacological Sciences, January 2021, Vol. 42, No. 1
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advantages in that the wild-type construct is used; the full energy landscape of the receptor
conformation is maintained and can be presented at one time in a reconstitution system such as
maltose–neopentyl glycol (MNG)-3 [62], nanodisc, or lipid bilayer systems [20,63,64]. On-going
innovation of solid-state NMR technology, especially the dynamic nuclear polarization (DNP)
technique [65] and its application in 19F NMR [66], holds tremendous potential for profiling
the receptor conformation faithfully in a genuine, native membrane environment or even in a
living cell.

Prospects of 19F NMR Application in Biased Drug Discovery
Progress of NMR Application in Receptor Conformational Delineation
It has been reported that the fluorine nucleus has a distinctly high gyromagnetic ratio and, thus,
greatest sensitivity for NMR, next to tritium and 1H nuclei [67]. 19F NMR as a result exhibits a
broad scope of chemical shifts over 1000 ppm [68], indicating a remarkable sensitivity to
surrounding environmental changes, with potential to detect the subtle electrostatic changes
associated with receptor activation. This provides a plausibility for rational design of biased
drugs by delineating the receptor conformations and correlating each one to a specific pharma-
cological signaling using 19F NMR. However, it is also true that the large chemical shift anisotropy
(CSA) of 19F, in contrast to that of 1H [69], often leads to line width broadening. As a result, the
signal/noise was dramatically affected and it may be difficult to distinguish overlapping conforma-
tions such as subtle conformational changes induced by ligands in some circumstances. In that
case, line shape simulation would be required [16,18] to identify overlapped conformers as well
as their exchange rates. Therefore, developing methods of further improving the sensitivity of
the 19F probe or identifying the most sensitive labeling site in the receptor are the alternatives
of increasing the conformational resolution, in part compensating for defects arising from
CSA effects.

Toward this effort, we discovered a higher electrostatic sensitive 19F NMR probe, BTFMA,
compared with two conventional chemical probes (e.g., BTFA and TFET) [16,67]. Taking advan-
tage of this novel probe, together with an upgraded GPCR sample preparation system [70] and a
judiciously selected 19F labeling site [18] on the receptor, we were able to further break new
ground by delineating A2AR into four distinct conformational states in a detergent MNG-3 system
via 19F NMR on the basis of our previous efforts on β2AR studies [16,21], including two inactive
states (S1-2) and two active states (S3 and S3′) (Figure 3). Besides

19F NMR, 2D 1H-13C correlation
spectra was also utilized to depict conformations of a typical GPCR, BLT2, in a reconstituted lipid
bilayer through 13C-labeled isoleucine and methionine [20]. Two distinct active conformations
were also observed in angiotensin receptor for β-arrestin and G protein [71], respectively. The
observation of the intermediate conformational state was meanwhile corroborated through
computational simulation of β2AR [46]. Furthermore, the biased signaling pathways of β2AR was
evaluated by another group through 19F NMR, where the conventional TFET labeling strategy was
used [22], though only two spectroscopic resonances were discerned in their study. The TFET
labeling strategy was used for the A2AR receptor as well [24], validating our previous observations
[18], though a minor discrepancy existed, which could arise from different sample preparation and
receptor constructs, 19F probes (BTFMA versus TFET), and purification procedures [18,24].

Besides profiling the receptor conformation, 19F NMR is also a powerful tool in fragment-based
drug screening to assess promising hits [72], including screening fluorinated fragment libraries,
measuring ligand binding affinities, and identifying the ligand binding mode. For instance, ligand
dissociation constant (KD) can be measured by 19F or 1H line width changes or the chemical
shift of the investigated ligands through titration. The particular pulse sequences such as satura-
tion transfer decay (STD) and WaterLOGSY experiments can also be used for the KD
Trends in Pharmacological Sciences, January 2021, Vol. 42, No. 1 23
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determination [73,74]. To this end, both binding affinity and preferred receptor conformation of
the investigated ligand can be evaluated in one (set of) NMR experiment(s). We anticipate this
kind of experiment could be done in a cell setting in the future, as depicted in Figures 3 and
4C. The development of unnatural amino acid (UAA) genetic incorporation techniques is paving
the way by integrating a fluorinated conformation reporter into the receptor in either extracellular
or intracellular domain. The related work is ongoing in our laboratory using Pichia pastoris as an
expression system. Currently, the main hurdle for achieving this is still the intensity of NMR signal
and how to further improve the heterogenous expression of the receptors instead of UAA incor-
poration itself.

Receptor Conformational Resolution Limitation and Solutions
Though dramatic progress has been made toward dissecting the receptor conformation ensemble,
especially with NMR techniques, there remain outstanding issues. In particular, difficulty in resolving
different conformational states is a major hurdle for its widespread practical application [18,22,24].
Insufficient resolution obscures the conformational transitions and dynamics of individual conforma-
tional states as well as the functions of individual states in response to a given ligand. Further efforts
TrendsTrends inin PharmacologicalPharmacological SciencesSciences

Figure 3. The Strategy of Profiling Receptor Conformation in High Resolution from Labeling Site Selection to the Approaches of Improving the
Conformational Resolution. The adenosine A2A receptor (A2AR) receptor labeling site of V229C was used as an example. Abbreviations: GPCR, G protein-coupled
receptor; TM, transmembrane domain.
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Figure 4. A Proposed Biased Drug Discovery Flowchart with Conformation Component Incorporated into a
Cell- and Structure-Based Drug Screening System. (A) Structure based screening produces chemicals with
potential activity (hits) that are then tested in (B) cell based screening. The hits that produce significant activity in cells are
then run through (C) conformation based screening, where chemicals with significant unwanted effects are removed from
the pool. Hits with this new layer of screening enter clinical trials (D), where they are tested in animal models for safety and
efficacy. Abbreviation: SAR, structure activity relationship.
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need to be made in order to establish a universal and applicable strategy for biased drug discovery
and acquisition of a high conformational resolution profile is the first step. To address this, a
combination of chemical, biological, and physical strategies could be implemented, including but
not limited to:

(i) Continuing the search for a higher electrostatically sensitive 19F probe: chemical screening is
an endless quest, but the expectation is that it is possible to identify a new probe with even
higher electrostatic sensitivity to microenvironmental changes than the current state-of-the-
art probes (e.g., BTFMA) to use in future work; computational approaches will be of use in
facilitating this screening process. MD simulations can in principle sample the relevant
receptor conformational ensemble (possibly with the use of enhanced sampling techniques).
Coupling this with quantum mechanical (QM) calculations to compute chemical shifts in silico
of the dominant structural clusters, representing the intermediate receptor conformations,
could predict 19F probes and evaluate possible attachment sites in the receptor with maximal
sensitivity. In our previous study, we established an empirical approach to examine the
surrounding electrostatic changes for different chemical probes [18] in combination with
QM calculations. Coupling this method with extensive MD simulations for conformational
exploration will likely improve accuracy in predictions. In summary, computationally profiling
the 19F probe sensitivity by integrating candidate 19F probes into the GPCR of interest
Trends in Pharmacological Sciences, January 2021, Vol. 42, No. 1 25
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Outstanding Questions
How can an unbiased evaluation
system, by which the individual
receptor conformation can be linked
to pharmacological outputs, be
established?

How can a high throughput biased
drug discovery system based on the
delineated receptor conformational
profile be established?

How can we achieve synergy between
structure-based (X-ray and cryo-EM)
and conformation-guided (NMR) drug
discovery in the new era?
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could be a more effective way to identify a specific labeling site for receptor conformational
profiling, though an optimized computational protocol and a relatively large-scale computational
capacity is required.

(ii) Shift reagent application: in NMR, lanthanides are a series of chemical elements that can facilitate
pseudo-contact chemical shift (PCS) effects on other proximal nuclei. Thus, we can strate-
gically attach a lanthanide metal to a specific location with a reasonable distance and orientation
from the 19F probe, which could result in a better resolution for different conformational states
[75]. The disadvantage of the PCS approach is that most of the lanthanide metals also possess
the paramagnetic relaxation enhancement (PRE) effects, causing undesirable line width
broadening. Considering the difficulty and low yield of GPCR sample preparation, this line
width broadening would be fatal. A macromolecular tag, such as DOTA chelated lanthanide at-
tachment, could also affect the receptor functionality. However, expression system engineering
could enable its application. The recent advance of yeast P. pastoris expression is promising in
the large-scale preparation of functional receptor with a relatively low expense, especially in con-
trast to insect and mammalian expression systems where the cost is always a concern for most
laboratories. In addition, the ease of isotopically labeling in the P. pastoris system under the con-
trol of the AOX promoter is another advantage where 13C-methanol can be served as both in-
ductor and carbon source to produce isotopically labeled receptors for NMR study.

(iii) New solvent system for receptor reconstitution: a major obstacle of the NMR application of
membrane protein study is that usually a reconstitution system is applied for receptor solubiliza-
tion. The increased rotational correlation time (new_tau]τc) caused by detergent, micelle, or

nanodisc systems often leads to a shortened T2 value and, as such, a broadened and decreased
NMR signal. Efforts are being made to develop nondetergent systems in hopes of increasing the
τc. For instance, a completely detergent-free solvent system called nanoscale styrene-maleic acid
(SMA) lipid particle (SMALP) has been developed, which also caused a remarkable increase in the
thermostability of the receptor in comparison with n-dodecyl-β-d-maltopyranoside (DDM) [76].
Studies have indicated the promise of SMALP to reconstitute GPCR [77] and showed the engage-
ment between the receptor and downstream partners [78]. Most recently, its applications have ex-
panded into resolving the cryo-EM structures of alternative complex III in a supercomplex with
cytochrome oxidase [79]. In comparison to nanodiscs and detergent systems, an overall smaller
molecular weight assembly might offer favorable relaxation advantages for NMR application [80],
though no NMR studies of SMALP-reconstituted GPCRs have been reported. An adaptable phos-
pholipid membrane mimetic system was also developed for solution state NMR studies and it has
been tested in several proteins, including GPCR [81]. A disulfide-containing detergent was also
engineered for membrane structural biology studies using solution-state NMR [82].
(iv) Engineering an electrostatic environment around the 19F probe: research has indicated that 19F

probes that manifested good conformational resolutions in various investigated receptors,
including β2AR [16,22,23], rhodopsin [83,84], and A2AR [18,19], were often surrounded by
aromatic amino acids. This finding offers the opportunity to increase conformational resolution
by engineering the electrostatic surroundings of the 19F probe.

(v) Labeling site expansion: it is possible to find a strategy of labeling residues in the hydrophobic
domains in order to expand labeling sites, such as UAA incorporation, in the place of solvent-
exposed domains [18,19]. A platform could be set up to provide a conformational profile with
high resolution through an integrated effort using the methods mentioned earlier.

Concluding Remarks and Future Perspectives
The current drug discovery strategy is predominantly based on the measurement of dose-
dependent downstream signaling such as the signaling levels of cAMP or Ca2+. Therefore,
receptor activation is typically described as an on/off two-state switch. As a result of this oversim-
plification, developed drugs based on the current system tend to overactivate or oversuppress
26 Trends in Pharmacological Sciences, January 2021, Vol. 42, No. 1
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downstream signaling, resulting in concomitant side effects. A detailed mechanistic understanding
of correlations between ligand, ligand-selected receptor conformation, and responsive pharmaco-
logical outputs would give scientists a critical understanding of how to rationally design a specific
signaling biased drug by integrating the receptor-conformation component (see Outstanding
Questions). As the technique develops, molecular cryo-EM, especially the newly developed cryo-
electron tomography (cryo-ET), has shown its power to analyze repeating structures within larger
pleomorphic objects using a process called cryo-ET subtomogram averaging and classification
(cryoSTAC) with improved signal-to-noise ratio and map resolution [85,86]. These subtomograms
can be even classified into multiple functional states or conformations [85,87]. However, the reso-
lution is still limited to 2–4 nm,with a few cases having a resolution close to 1 nm, and cannot profile
protein motion at the Ångström scale. Additionally, it is still practically impossible to get cryo-EM
structures for all candidate drugs by analyzing their structures and conformations in a real drug
screening process. Therefore, structure-based drug discovery systems have fundamental limita-
tions that need complementary approaches to be successful. To that end, NMR spectroscopy is
TrendsTrends inin PharmacologicalPharmacological SciencesSciences

Figure 5. A Biased Drug Discovery Strategy That Correlates Receptor Conformation to the Functional
Selectivity of Ligand. Note the resolution for different conformational states in this schematic merely illustrates the
principle of activation by a biased drug.
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poised to be an extremely powerful tool for gaining insights into the different conformations of a
receptor, which can even be performed in a physiologically closed solution system for ligand
competition experiments to be conducted. The dynamic behavior of individual conformational
states can contribute to different downstream signaling pathways, which is impossible to capture
in X-ray crystallography and cryo-EM.

We anticipate that, as the conformational resolution of receptors with NMR keeps improving, a
platform correlating the ligand pharmacophore, ligand selected receptor conformation, and
responsive functionality (Figure 5) could be established, enabling the rational design of biased
drugs, elevating the current cell- and structure-screening system for high specific drug discovery
with fewer side-effects (Figure 4). We note finally that the efficacy and efficiency of a particular
signal pathway are also affected by the kinetics and dynamical aspects of the receptor, interac-
tion effectors, and ligands; the comprehensive elaboration hereof is beyond the limited scope
of this review.
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